Why some bird brains are larger than others

نویسنده

  • Fahad Sultan
چکیده

How does brain size and design influence the survival chances of a species? A large brain may contribute to an individual’s success irrespective of its detailed composition. I have studied the size and shape of cerebella in birds and looked for links between the bird’s cerebellar design, brain size and behavior. My results indicate that the cerebellum in large-brained birds does not scale uniformly, but occurs in two designs. Crows, parrots and woodpeckers show an enlargement of the cerebellar trigeminal and visual parts, while owls show an enlargement of vestibular and tail somatosensory cerebellar regions, likely related to their specialization as nocturnal raptors. The enlargement of specific cerebellar regions in crows, parrots and woodpeckers may be related to their repertoire of visually guided goal-directed beak behavior. This specialization may lead to an increased active exploration and perception of the physical world, much as primates use of their hands to explore their environment. The parallel specialization seen in some birds and primates may point to the influence of a similar neuronal machine in shaping selection during phylogeny. The cerebellum is a highly conserved part of the brain present in most vertebrates [1], well suited for a comparative study of size and design. The cerebellum in birds, as in mammals, consists of a strongly folded, thin sheet of gray matter, located dorsally to the brainstem. In birds, it largely consists of a single narrow strip that varies in different species in the anteroposterior extension, which corresponds to the cerebellar length. The cerebellum of birds is commonly subdivided into ten groups of folds termed lobuli [2]. Both variability and regularity are evident in the lobular pattern of the bird cerebella. To quantify these structural varieties and relate them to functional or phylogenetic differences, a principal component analysis was performed on the residuals of the lobuli length, obtained from a double-logarithmic regression of lobuli length against body size (see Supplemental Data on-line for further details). Generally, birds within a family (Figure 1) tended to score similarly on the two principal components (PCs). The variability in the principal plane is dominated by variability between bird families (one-way ANOVA with bird family as factor: F(23, 24) = 4.59, p < 0.001). The group of birds that scored highly on the first PC consisted of crows, parrots and woodpeckers. In contrast, the nocturnal owls had a different growth pattern and scored highly on the second PC. Both PCs together explained 66% of the total variance (first PC, 44%; second PC, 22%). The cerebellar growth of the first group is based on the enlargement of Larsell’s lobuli IV and VI–IX, while in the owl group lobuli I–II and X increase in size (Figure 2A,B). The difference in enlargement of these two groups of lobuli in the two groups of birds, i.e., crows, parrots and woodpeckers versus owls was statistically significant (Figure 2C). The following groups of cerebellar lobuli can be related to functional subdivisions through their afferents: somatosensory (tail, III–IV; leg, IV–V; wing, IV–VIa; head, V–VII and VIIIb–IXa) [3,4], visual (VIc–IXc) [5,6], auditory (VII–VIII) and vestibular (IXd–X) [7]. My analysis indicates that, in the diurnal bird group (crows, parrots and woodpeckers), the cerebellar regions that receive visual and trigeminal inputs show the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

What Are Different Brains Made Of?

The brain is the most complex organ that ever evolved. The brain controls important functions in the body like keeping your heartbeat and your breathing normal. It controls the movement of your eyes across the page as you read this, it makes sense of the ink on the page to form words, and it links these words with concepts in your memory and makes new concepts as you learn. And the brain was al...

متن کامل

Sexual Dimorphism in Volume of Precentral Cortex of Human Brain in Normal Subject who are Suffering from Alzheimer and Parkinson-A Stereological and Macroscopical Study

Purpose: This study is designed to determine the sex difference in volume of precentral cortex of left hemisphere in right-handed normal subjects and the right-handed subjects which are suffering from Alzheimer and Parkinson diseases. Materials and Methods: This study was performed on 72 normal human brains (38 males, 34 females), 11 human brains suffering from Alzheimer (4 males, 7 females), ...

متن کامل

Light enough to travel: migratory bats have smaller brains, but not larger hippocampi, than sedentary species

Migratory bird species have smaller brains than non-migratory species. The behavioural flexibility/migratory precursor hypothesis suggests that sedentary birds have larger brains to allow the behavioural flexibility required in a seasonally variable habitat. The energy trade-off hypothesis proposes that brains are heavy, energetically expensive and therefore, incompatible with migration. Here, ...

متن کامل

Brain Volumes of the Lamb, Rat and Bird Do Not Show Hemispheric Asymmetry: a Stereological Study

It is well known that there are functional differences between right and left brain hemispheres. However, it is not clear whether these functional differences are reflected in morphometric differences. This study was carried out to investigate the right-left asymmetry, and sex and species differences of the brains using the Cavalieri principle for volume estimation. Seventeen lambs, 10 rats and...

متن کامل

Environmental variation and the evolution of large brains in birds

Environmental variability has long been postulated as a major selective force in the evolution of large brains. However, assembling evidence for this hypothesis has proved difficult. Here, by combining brain size information for over 1,200 bird species with remote-sensing analyses to estimate temporal variation in ecosystem productivity, we show that larger brains (relative to body size) are mo...

متن کامل

Why Do the Results of Studies on the Effectiveness of Pralidoxime for Treatment of Organophosphate Poisoning Vary?

Organophosphate (OP) compounds are frequently used agorchemicals for deliberate self-harm in some parts of the world resulting in high mortality and morbidity. Pralidoxime (2PAM) is the most widely used and trialed oxime for treatment of OP poisoning. There have been variations over the results of trials using 2PAM for OP poisoning. 2PAM therapy has led to favorable outcomes in some studies, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005